The new research applies statistical analysis to show that those measures are in sync and that nine out of 11 show a clear trend. Prior research had suggested that the AMOC was at its weakest point in a millennium or more, and suggested a roughly 15 percent weakening since about 1950. But when it comes to the latest evidence, “I think it just makes this conclusion considerably stronger,” said Stefan Rahmstorf, an author of the research and an oceanographer with the Potsdam Institute for Climate Impact Research in Germany.
The study was published in Nature Geoscience by scientists from the Potsdam Institute, Ireland’s Maynooth University and University College London. The AMOC is driven by two vital components of ocean water: temperature and salt. In the North Atlantic, warm, salty water flows northward off the U.S. coastline, carrying heat from the tropics. But as it reaches the middle latitudes, it cools, and around Greenland, the cooling and the saltiness create enough density that the water begins to sink deep beneath the surface.
In the North Atlantic, most important is the transport of heat northward, which has a moderating effect on Europe’s climate in particular. But the circulation can be weakened by making northern water more fresh and less salty, and therefore less dense. That’s what climate change — through a combination of more rain and snow, more melting of Arctic sea ice, and huge freshwater pulses from Greenland — is thought to be doing.