A research group led by Associate Professor Takashi Tachikawa of Kobe University’s Molecular Photoscience Research Center has developed a strategy that greatly increases the amount of hydrogen produced from sunlight and water using hematite (α‐Fe 2 O 3 ) photocatalysts. They were able to raise the conversion rate up to 42% of its theoretical limit (16%) by synthesizing tiny nanoparticle subunits in the hematite. A paper on their work appears in the journal Angewandte Chemie International Edition Mesocrystal photoanode formation and photochemical water splitting characteristics. a. Electron microscope image of a hematite mesocrystal (assembled from tiny nano-particles of approx. 5nm). b. Gas production from the anode. c. Graph to show the current density and applied voltage. The anode is the photocatalyst anode, and a platinum electrode was used for the cathode. The potential is based on the RHE (Reversible Hydrogen Electrode). The oxidation potential is 1.23V. The solar water […]