Inspired by naturally occurring processes, a team of Boston College chemists used a multi-catalyst system to convert carbon dioxide to methanol at the lowest temperatures reported with high activity and selectivity. A paper on the work is published in the journal Chem . Methanol is a promising renewable fuel that can be adapted to the current liquid fuel infrastructure. It can be produced from hydrogen and carbon dioxide, mitigating greenhouse gas emissions and storing hydrogen in the process. However, the industrial production of methanol through this hydrogenation reaction currently requires elevated temperatures and pressures and can produce significant amounts of unwanted byproducts. Here, we employ a bioinspired tandem catalytic system to efficiently hydrogenate carbon dioxide to methanol selectively at low temperatures. We achieved superior performance by eliminating catalyst incompatibility through encapsulating at least one of the catalysts involved in the tandem process in nanoporous materials called metal-organic frameworks. In […]